Containment Problem for points on another reducible conic

Mike Janssen
(joint with A. Denkert)

Department of Mathematics

October 16, 2011

s-mjansse7@math.unl.edu
Recall:

Q: Given an ideal I, how do $I^{(m)}$ and I^r compare?

If $I \subseteq R = k[\mathbb{P}^N]$ is the ideal of points $p_1, p_2, \ldots, p_d \in \mathbb{P}^N$, then $I^{(m)} = \cap_i I(p_i)^m$.

Example: If I defines a complete intersection, $I^{(m)} = I^m$.

Facts: Given $0 \neq I \subsetneq R = k[\mathbb{P}^N]$ homogeneous,

- $I^r \subseteq I^{(m)} \iff r \geq m$.
- $I^{(m)} \subseteq I^r \Rightarrow m \geq r$, so assume $m \geq r$.

Containment Problem (CP): For which m and r is $I^{(m)} \subseteq I^r$?
The Problem

Recall:

Q: Given an ideal \(I \), how do \(I^{(m)} \) and \(I^r \) compare?

If \(I \subseteq R = k[\mathbb{P}^N] \) is the ideal of points \(p_1, p_2, \ldots, p_d \in \mathbb{P}^N \), then
\[
I^{(m)} = \bigcap_i I(p_i)^m.
\]

Example: If \(I \) defines a complete intersection, \(I^{(m)} = I^m \).

Facts: Given \(0 \neq I \subsetneq R = k[\mathbb{P}^N] \) homogeneous,
- \(I^r \subseteq I^{(m)} \iff r \geq m \).
- \(I^{(m)} \subseteq I^r \implies m \geq r \), so assume \(m \geq r \).

Containment Problem (CP): For which \(m \) and \(r \) is \(I^{(m)} \subseteq I^r \)?
The Problem

Recall:

Q: Given an ideal I, how do $I^{(m)}$ and I^r compare?

If $I \subseteq R = k[\mathbb{P}^N]$ is the ideal of points $p_1, p_2, \ldots, p_d \in \mathbb{P}^N$, then $I^{(m)} = \cap_i I(p_i)^m$.

Example: If I defines a complete intersection, $I^{(m)} = I^m$.

Facts: Given $0 \neq I \subsetneq R = k[\mathbb{P}^N]$ homogeneous,

- $I^r \subseteq I^{(m)} \iff r \geq m$.
- $I^{(m)} \subseteq I^r \Rightarrow m \geq r$, so assume $m \geq r$.

Containment Problem (CP): For which m and r is $I^{(m)} \subseteq I^r$?
The Problem

Recall:

Q: Given an ideal \(I \), how do \(I^{(m)} \) and \(I^r \) compare?

If \(I \subseteq R = k[\mathbb{P}^N] \) is the ideal of points \(p_1, p_2, \ldots, p_d \in \mathbb{P}^N \), then
\[
I^{(m)} = \bigcap \{ I(p_i)^m \}.
\]

Example: If \(I \) defines a complete intersection, \(I^{(m)} = I^m \).

Facts: Given \(0 \neq I \subset R = k[\mathbb{P}^N] \) homogeneous,
- \(I^r \subseteq I^{(m)} \iff r \geq m \).
- \(I^{(m)} \subseteq I^r \Rightarrow m \geq r \), so assume \(m \geq r \).

Containment Problem (CP): For which \(m \) and \(r \) is \(I^{(m)} \subseteq I^r \)?
The Problem

Recall:

Q: Given an ideal I, how do $I^{(m)}$ and I^r compare?

If $I \subseteq R = k[\mathbb{P}^N]$ is the ideal of points $p_1, p_2, \ldots, p_d \in \mathbb{P}^N$, then $I^{(m)} = \cap_i I(p_i)^m$.

Example: If I defines a complete intersection, $I^{(m)} = I^m$.

Facts: Given $0 \neq I \subsetneq R = k[\mathbb{P}^N]$ homogeneous,

- $I^r \subseteq I^{(m)} \iff r \geq m$.
- $I^{(m)} \subseteq I^r \Rightarrow m \geq r$, so assume $m \geq r$.

Containment Problem (CP): For which m and r is $I^{(m)} \subseteq I^r$?
The Problem

Recall:

Q: Given an ideal I, how do $I^{(m)}$ and I^r compare?

If $I \subseteq R = k[\mathbb{P}^N]$ is the ideal of points $p_1, p_2, \ldots, p_d \in \mathbb{P}^N$, then

$I^{(m)} = \cap_i I(p_i)^m$.

Example: If I defines a complete intersection, $I^{(m)} = I^m$.

Facts: Given $0 \neq I \subsetneq R = k[\mathbb{P}^N]$ homogeneous,

- $I^r \subseteq I^{(m)} \Leftrightarrow r \geq m$.
- $I^{(m)} \subseteq I^r \Rightarrow m \geq r$, so assume $m \geq r$.

Containment Problem (CP): For which m and r is $I^{(m)} \subseteq I^r$?
Two ways to solve the CP

- (Exact Solution) Find the set of all \((m, r)\) such that \(I^{(m)} \subseteq I^r\).

- (Asymptotic Solution) Find the resurgence, \(\rho(I)\), defined by Bocci and Harbourne:

\[
\rho(I) = \sup \left\{ \frac{m}{r} : I^{(m)} \nsubseteq I^r \right\}
\]

Obviously, \(m/r > \rho(I)\) implies \(I^{(m)} \subseteq I^r\).
Two ways to solve the CP

- (Exact Solution) Find the set of all \((m, r)\) such that \(I^{(m)} \subseteq I^r\).

- (Asymptotic Solution) Find the resurgence, \(\rho(I)\), defined by Bocci and Harbourne:

\[
\rho(I) = \sup \left\{ \frac{m}{r} : I^{(m)} \not\subseteq I^r \right\}
\]

Obviously, \(\frac{m}{r} > \rho(I)\) implies \(I^{(m)} \subseteq I^r\).
Two ways to solve the CP

- **(Exact Solution)** Find the set of all \((m, r)\) such that \(I^{(m)} \subseteq I^r\).

- **(Asymptotic Solution)** Find the *resurgence*, \(\rho(I)\), defined by Bocci and Harbourne:

 \[
 \rho(I) = \sup \left\{ \frac{m}{r} : I^{(m)} \not\subseteq I^r \right\}
 \]

 Obviously, \(m/r > \rho(I)\) implies \(I^{(m)} \subseteq I^r\).
Some facts about $\rho(I)$

Theorem (Hochster-Huneke)

For $I \subseteq k[\mathbb{P}^N]$ homogeneous, $I^{(rN)} \subseteq I^r$.

Corollary

If $I \subseteq k[\mathbb{P}^N]$ is nontrivial and homogeneous, $1 \leq \rho(I) \leq N$.

For ideals $0 \neq I \subsetneq k[\mathbb{P}^N]$ homogeneous,
- If I defines a complete intersection, then $\rho(I) = 1$.
- No I is known with $\rho(I) = N$.
- Computing ρ is hard; complete solutions are even harder.
- Exact values of ρ are known in only a few cases.

Today: I defines points on a pair of lines.
Some facts about $\rho(I)$

Theorem (Hochster-Huneke)

For $I \subseteq k[\mathbb{P}^N]$ homogeneous, $I^{(rN)} \subseteq I^r$.

Corollary

If $I \subseteq k[\mathbb{P}^N]$ is nontrivial and homogeneous, $1 \leq \rho(I) \leq N$.

For ideals $0 \neq I \subsetneq k[\mathbb{P}^N]$ homogeneous,
- If I defines a complete intersection, then $\rho(I) = 1$.
- No I is known with $\rho(I) = N$.
- Computing ρ is hard; complete solutions are even harder.
- Exact values of ρ are known in only a few cases.

Today: I defines points on a pair of lines.
Some facts about $\rho(I)$

Theorem (Hochster-Huneke)

For $I \subseteq k[\mathbb{P}^N]$ homogeneous, $I^{(rN)} \subseteq I^r$.

Corollary

If $I \subseteq k[\mathbb{P}^N]$ is nontrivial and homogeneous, $1 \leq \rho(I) \leq N$.

For ideals $0 \neq I \subsetneq k[\mathbb{P}^N]$ homogeneous,

- If I defines a complete intersection, then $\rho(I) = 1$.
- No I is known with $\rho(I) = N$.
- Computing ρ is hard; complete solutions are even harder.
- Exact values of ρ are known in only a few cases.

Today: I defines points on a pair of lines.
Some facts about $\rho(I)$

Theorem (Hochster-Huneke)

For $I \subseteq k[\mathbb{P}^N]$ homogeneous, $I^{(rN)} \subseteq I^r$.

Corollary

If $I \subseteq k[\mathbb{P}^N]$ is nontrivial and homogeneous, $1 \leq \rho(I) \leq N$.

For ideals $0 \neq I \subsetneq k[\mathbb{P}^N]$ homogeneous,

- If I defines a complete intersection, then $\rho(I) = 1$.
- No I is known with $\rho(I) = N$.
- Computing ρ is hard; complete solutions are even harder.
- Exact values of ρ are known in only a few cases.

Today: I defines points on a pair of lines.
Some facts about $\rho(I)$

Theorem (Hochster-Huneke)

For $I \subseteq k[\mathbb{P}^N]$ homogeneous, $I^{(rN)} \subseteq I^r$.

Corollary

If $I \subseteq k[\mathbb{P}^N]$ is nontrivial and homogeneous, $1 \leq \rho(I) \leq N$.

For ideals $0 \neq I \not\subset k[\mathbb{P}^N]$ homogeneous,

- If I defines a complete intersection, then $\rho(I) = 1$.
- No I is known with $\rho(I) = N$.
- Computing ρ is hard; complete solutions are even harder.
- Exact values of ρ are known in only a few cases.

Today: I defines points on a pair of lines.
Some facts about $\rho(I)$

Theorem (Hochster-Huneke)

For $I \subseteq k[\mathbb{P}^N]$ homogeneous, $I^{(rN)} \subseteq I^r$.

Corollary

If $I \subseteq k[\mathbb{P}^N]$ is nontrivial and homogeneous, $1 \leq \rho(I) \leq N$.

For ideals $0 \neq I \subsetneq k[\mathbb{P}^N]$ homogeneous,

- If I defines a complete intersection, then $\rho(I) = 1$.
- No I is known with $\rho(I) = N$.
- Computing ρ is hard; complete solutions are even harder.
- Exact values of ρ are known in only a few cases.

Today: I defines points on a pair of lines.
Some facts about $\rho(I)$

Theorem (Hochster-Huneke)

For $I \subseteq k[\mathbb{P}^N]$ homogeneous, $I^{(rN)} \subseteq I^r$.

Corollary

If $I \subseteq k[\mathbb{P}^N]$ is nontrivial and homogeneous, $1 \leq \rho(I) \leq N$.

For ideals $0 \neq I \subsetneq k[\mathbb{P}^N]$ homogeneous,

- If I defines a complete intersection, then $\rho(I) = 1$.
- No I is known with $\rho(I) = N$.
- Computing ρ is hard; complete solutions are even harder.
- Exact values of ρ are known in only a few cases.

Today: I defines points on a pair of lines.
Some facts about $\rho(I)$

Theorem (Hochster-Huneke)

For $I \subseteq k[\mathbb{P}^N]$ homogeneous, $I^{(rN)} \subseteq I^r$.

Corollary

If $I \subseteq k[\mathbb{P}^N]$ is nontrivial and homogeneous, $1 \leq \rho(I) \leq N$.

For ideals $0 \neq I \subsetneq k[\mathbb{P}^N]$ homogeneous,

- If I defines a complete intersection, then $\rho(I) = 1$.
- No I is known with $\rho(I) = N$.
- Computing ρ is hard; complete solutions are even harder.
- Exact values of ρ are known in only a few cases.

Today: I defines points on a pair of lines.
Points in \mathbb{P}^2, ideals in $R = k[\mathbb{P}^2] = k[x, y, z]$:

\[
\begin{align*}
 y &= 0, \\
 x &= 0
\end{align*}
\]

- $n \geq 3$
- $I(p_0) = (x, y)$ and $I(p_1 + \cdots + p_n) = (z, F)$, $F \in k[x, y]$, $\deg F = n$
- $I = I(p_0 + p_1 + \cdots + p_n) = (x, y) \cap (z, F) = (xz, yz, F)$
- $I^{(m)} = (x, y)^{(m)} \cap (z, F)^{(m)} = (x, y)^m \cap (z, F)^m$
Points in \mathbb{P}^2, ideals in $R = k[\mathbb{P}^2] = k[x, y, z]$:

- $y = 0$ and $x = 0$
- p_0
- $p_1, p_2, p_3, \ldots, p_n$
- $z = 0$

- $n \geq 3$
- $I(p_0) = (x, y)$ and $I(p_1 + \cdots + p_n) = (z, F)$, $F \in k[x, y]$, $\deg F = n$
- $I = I(p_0 + p_1 + \cdots + p_n) = (x, y) \cap (z, F) = (xz, yz, F)$
- $I^{(m)} = (x, y)^{(m)} \cap (z, F)^{(m)} = (x, y)^m \cap (z, F)^m$
Points in \mathbb{P}^2, ideals in $R = k[\mathbb{P}^2] = k[x, y, z]$:

1. $n \geq 3$
2. $I(p_0) = (x, y)$ and $I(p_1 + \cdots + p_n) = (z, F)$, $F \in k[x, y]$, $\deg F = n$
3. $I = I(p_0 + p_1 + \cdots + p_n) = (x, y) \cap (z, F) = (xz, yz, F)$
4. $I^{(m)} = (x, y)^{(m)} \cap (z, F)^{(m)} = (x, y)^m \cap (z, F)^m$
Points in \(\mathbb{P}^2 \), ideals in \(R = k[\mathbb{P}^2] = k[x, y, z] \):

\[
\begin{align*}
 y &= 0 \\
 x &= 0
\end{align*}
\]

- \(n \geq 3 \)
- \(I(p_0) = (x, y) \) and \(I(p_1 + \cdots + p_n) = (z, F), \; F \in k[x, y], \; \deg F = n \)
- \(I = I(p_0 + p_1 + \cdots + p_n) = (x, y) \cap (z, F) = (xz, yz, F) \)
- \(I^{(m)} = (x, y)^{(m)} \cap (z, F)^{(m)} = (x, y)^m \cap (z, F)^m \)
Points in \mathbb{P}^2, ideals in $R = k[\mathbb{P}^2] = k[x, y, z]$:

$y = 0 \quad x = 0$

- $n \geq 3$
- $I(p_0) = (x, y)$ and $I(p_1 + \cdots + p_n) = (z, F), F \in k[x, y], \deg F = n$
- $I = I(p_0 + p_1 + \cdots + p_n) = (x, y) \cap (z, F) = (xz, yz, F)$
- $I^{(m)} = (x, y)^{(m)} \cap (z, F)^{(m)} = (x, y)^m \cap (z, F)^m$
The idea
Find compatible k-bases of the ideals

Theorem (k-basis of R)

$R = k[x, y, z]$ is spanned by “monomials” of the form $x^eF^iy^jz^l$, where $0 \leq e < n$.

Idea of the proof: $R = \text{span}_k \langle x^\beta y^\gamma z^\delta \rangle$ and deg $F = n$, so replace x^{bn} with F^b.

Proposition (k-bases of $(z, F)^m$ and $(x, y)^m$)

(a) The ideal $(z, F)^m$ is spanned by forms $x^eF^iy^jz^l$ satisfying $e + in + ln \geq mn$ for $e, i, j, l \geq 0$.

(b) The ideal $(x, y)^m$ is spanned by forms $x^eF^iy^jz^l$ satisfying $e + in + j \geq m$ for $e, i, j, l \geq 0$.
The idea
Find compatible k-bases of the ideals

Theorem (k-basis of R)

$R = k[x, y, z]$ is spanned by “monomials” of the form $x^e F^i y^j z^l$, where $0 \leq e < n$.

Idea of the proof: $R = \text{span}_k \langle x^\beta y^\gamma z^\delta \rangle$ and deg $F = n$, so replace x^{bn} with F^b.

Proposition (k-bases of $(z, F)^m$ and $(x, y)^m$)

(a) The ideal $(z, F)^m$ is spanned by forms $x^e F^i y^j z^l$ satisfying $e + in + ln \geq mn$ for $e, i, j, l \geq 0$.

(b) The ideal $(x, y)^m$ is spanned by forms $x^e F^i y^j z^l$ satisfying $e + in + j \geq m$ for $e, i, j, l \geq 0$.
The idea

Find compatible k-bases of the ideals

Theorem (k-basis of R)

$R = k[x, y, z]$ is spanned by “monomials” of the form $x^e F^i y^j z^l$, where $0 \leq e < n$.

Idea of the proof: $R = \text{span}_k \langle x^\beta y^\gamma z^\delta \rangle$ and $\deg F = n$, so replace x^{bn} with F^b.

Proposition (k-bases of $(z, F)^m$ and $(x, y)^m$)

(a) The ideal $(z, F)^m$ is spanned by forms $x^e F^i y^j z^l$ satisfying $e + in + ln \geq mn$ for $e, i, j, l \geq 0$.

(b) The ideal $(x, y)^m$ is spanned by forms $x^e F^i y^j z^l$ satisfying $e + in + j \geq m$ for $e, i, j, l \geq 0$.
The idea
Find compatible k-bases of the ideals

Theorem (k-basis of R)

$R = k[x, y, z]$ is spanned by “monomials” of the form $x^eF^iy^jz^l$, where $0 \leq e < n$.

Idea of the proof: $R = \text{span}_k \langle x^\beta y^\gamma z^\delta \rangle$ and $\deg F = n$, so replace x^{bn} with F^b.

Proposition (k-bases of $(z, F)^m$ and $(x, y)^m$)

(a) The ideal $(z, F)^m$ is spanned by forms $x^eF^iy^jz^l$ satisfying $e + in + ln \geq mn$ for $e, i, j, l \geq 0$.

(b) The ideal $(x, y)^m$ is spanned by forms $x^eF^iy^jz^l$ satisfying $e + in + j \geq m$ for $e, i, j, l \geq 0$.
The idea
Find compatible k-bases of the ideals

Theorem (k-basis of R)

$R = k[x, y, z]$ is spanned by “monomials” of the form $x^e F^i y^j z^l$, where $0 \leq e < n$.

Idea of the proof: $R = \text{span}_k \langle x^\beta y^\gamma z^\delta \rangle$ and $\deg F = n$, so replace x^{bn} with F^b.

Proposition (k-bases of $(z, F)^m$ and $(x, y)^m$)

(a) The ideal $(z, F)^m$ is spanned by forms $x^e F^i y^j z^l$ satisfying $e + in + ln \geq mn$ for $e, i, j, l \geq 0$.

(b) The ideal $(x, y)^m$ is spanned by forms $x^e F^i y^j z^l$ satisfying $e + in + j \geq m$ for $e, i, j, l \geq 0$.

Corollary \((k\)-basis of \(I^{(m)}\))

Let \(m \geq 1\). Recall \(I^{(m)} = (x, y)^m \cap (z, F)^m\). Then \(I^{(m)}\) is spanned by “monomials” of the form \(x^e F^i y^j z^l\), where \(e, i, j, l \geq 0, 0 \leq e < n\) and

(a) \(e + in + ln \geq mn\), and

(b) \(e + in + j \geq m\).

Proposition \((k\)-basis of \(I^r\))

Let \(r \geq 1\). Then \(I^r\) is spanned by elements of the form \(x^e F^i y^j z^l\) with \(e, i, j, l \geq 0\) and:

(a) \(l < j\) and \(e + in + nl \geq rn\), or

(b) \(e + in + j \leq l\) and \(e + in + j \geq r\), or

(c) \(j \leq l < e + in + j\) and \(e + in + j + (n - 1)l \geq rn\).
Corollary (\(k\)-basis of \(I^{(m)}\))

Let \(m \geq 1\). Recall \(I^{(m)} = (x, y)^m \cap (z, F)^m\). Then \(I^{(m)}\) is spanned by “monomials” of the form \(x^e F^i y^j z^l\), where \(e, i, j, l \geq 0\), \(0 \leq e < n\) and

(a) \(e + in + ln \geq mn\), and
(b) \(e + in + j \geq m\).

Proposition (\(k\)-basis of \(I^r\))

Let \(r \geq 1\). Then \(I^r\) is spanned by elements of the form \(x^e F^i y^j z^l\) with \(e, i, j, l \geq 0\) and:

(a) \(l < j\) and \(e + in + nl \geq rn\), or
(b) \(e + in + j \leq l\) and \(e + in + j \geq r\), or
(c) \(j \leq l < e + in + j\) and \(e + in + j + (n - 1)l \geq rn\).
Corollary (k-basis of \(I^{(m)} \))

Let \(m \geq 1 \). Recall \(I^{(m)} = (x, y)^m \cap (z, F)^m \). Then \(I^{(m)} \) is spanned by “monomials” of the form \(x^e F^i y^j z^l \), where \(e, i, j, l \geq 0 \), \(0 \leq e < n \) and

(a) \(e + in + ln \geq mn \), and
(b) \(e + in + j \geq m \).

Proposition (k-basis of \(I^r \))

Let \(r \geq 1 \). Then \(I^r \) is spanned by elements of the form \(x^e F^i y^j z^l \) with \(e, i, j, l \geq 0 \) and:

(a) \(l < j \) and \(e + in + nl \geq rn \), or
(b) \(e + in + j \leq l \) and \(e + in + j \geq r \), or
(c) \(j \leq l < e + in + j \) and \(e + in + j + (n - 1)l \geq rn \).
Corollary (k-basis of $I^{(m)}$)

Let $m \geq 1$. Recall $I^{(m)} = (x, y)^m \cap (z, F)^m$. Then $I^{(m)}$ is spanned by “monomials” of the form $x^e F^i y^j z^l$, where $e, i, j, l \geq 0$, $0 \leq e < n$ and

(a) $e + in + ln \geq mn$, and

(b) $e + in + j \geq m$.

Proposition (k-basis of I^r)

Let $r \geq 1$. Then I^r is spanned by elements of the form $x^e F^i y^j z^l$ with $e, i, j, l \geq 0$ and:

(a) $l < j$ and $e + in + nl \geq rn$, or

(b) $e + in + j \leq l$ and $e + in + j \geq r$, or

(c) $j \leq l < e + in + j$ and $e + in + j + (n - 1)l \geq rn$.
An Example

Claim: \(I^{(7)} \not\subseteq I^6 \) when \(n = \deg F = 3 \).

Consider \(xF^2z^5 \in I^{(7)} \) since it satisfies the inequalities

(a) \(e + in + ln \geq mn \) (i.e., \(1 + 2 \cdot 3 + 5 \cdot 3 \geq 7 \cdot 3 \)), and

(b) \(e + in + j \geq m \) (i.e., \(1 + 2 \cdot 3 + 0 \geq 7 \))

but \(xF^2z^5 \not\in I^6 \) since

- \(j \leq l < e + in + j \) (i.e., \(0 \leq 5 < 1 + 2 \cdot 3 + 0 \))
- but \(e + in + j + (n - 1)l \geq rn \) (i.e., \(1 + 2 \cdot 3 + 0 + (3 - 1) \cdot 5 = 17 \geq 18 = 6 \cdot 3 \)) fails.
An Example

Claim: $I^{(7)} \not\subseteq I^6$ when $n = \deg F = 3$.
Consider $xF^2z^5 \in I^{(7)}$ since it satisfies the inequalities

(a) $e + in + ln \geq mn$ (i.e., $1 + 2 \cdot 3 + 5 \cdot 3 \geq 7 \cdot 3$), and
(b) $e + in + j \geq m$ (i.e., $1 + 2 \cdot 3 + 0 \geq 7$)

but $xF^2z^5 \notin I^6$ since

- $j \leq l < e + in + j$ (i.e., $0 \leq 5 < 1 + 2 \cdot 3 + 0$)
- but $e + in + j + (n - 1)l \geq rn$
 (i.e., $1 + 2 \cdot 3 + 0 + (3 - 1) \cdot 5 = 17 \geq 18 = 6 \cdot 3$) fails.
An Example

Claim: \(I^{(7)} \not\subseteq I^6 \) when \(n = \deg F = 3 \).
Consider \(xF^2 z^5 \in I^{(7)} \) since it satisfies the inequalities

(a) \(e + in + ln \geq mn \) (i.e., \(1 + 2 \cdot 3 + 5 \cdot 3 \geq 7 \cdot 3 \)), and

(b) \(e + in + j \geq m \) (i.e., \(1 + 2 \cdot 3 + 0 \geq 7 \))

but \(xF^2 z^5 \not\in I^6 \) since

- \(j \leq l < e + in + j \) (i.e., \(0 \leq 5 < 1 + 2 \cdot 3 + 0 \))
- but \(e + in + j + (n - 1)l \geq rn \)
 (i.e., \(1 + 2 \cdot 3 + 0 + (3 - 1) \cdot 5 = 17 \geq 18 = 6 \cdot 3 \)) fails.
Main Results

Two solutions to the CP

Theorem (Complete Solution)

Let I be the ideal of $n \geq 3$ collinear points and one point off the line. Then $I^{(m)} \nsubseteq I'$ holds if and only if either

- $m < n$ and $m \leq \frac{rn^2 + rn - n - 2}{n^2}$, or
- $m \geq n$ and $m \leq \frac{n^2 r - n}{n^2 - n + 1}$.

Theorem (Asymptotic Solution)

For the ideal I of $n \geq 3$ collinear points and one point off the line,

$$\rho(I) = \frac{n^2}{n^2 - n + 1}.$$
Two solutions to the CP

Theorem (Complete Solution)

Let I be the ideal of $n \geq 3$ collinear points and one point off the line. Then $I^{(m)} \not\subseteq I^r$ holds if and only if either

- $m < n$ and $m \leq \frac{rn^2 + rn - n - 2}{n^2}$, or
- $m \geq n$ and $m \leq \frac{n^2r - n}{n^2 - n + 1}$.

Theorem (Asymptotic Solution)

For the ideal I of $n \geq 3$ collinear points and one point off the line,

$$\rho(I) = \frac{n^2}{n^2 - n + 1}.$$
Computing $\rho(I)$ from the complete solution

Assume $m \geq n$

Recall $I^{(m)} \not\subseteq I^r \iff m \leq \frac{n^2 r - n}{n^2 - n + 1}$.

Then $\frac{m}{r} > \frac{n^2}{n^2 - n + 1} > \frac{n^2 - n/r}{n^2 - n + 1} \Rightarrow m > \frac{n^2 r - n}{n^2 - n + 1} \Rightarrow I^{(m)} \subseteq I^r$.

Thus, $\rho(I) \leq \frac{n^2}{n^2 - n + 1}$.

Conversely, take $m = tn^2 - 1$ and $r = t(n^2 - n + 1)$. Then

$m \leq \frac{n^2 r - n}{n^2 - n + 1}$, but

$$\lim_{t \to \infty} \frac{m}{r} = \lim_{t \to \infty} \frac{tn^2 - 1}{t(n^2 - n + 1)} = \frac{n^2}{n^2 - n + 1},$$

so $\rho(I) \geq \frac{n^2}{n^2 - n + 1}$.
Computing $\rho(I)$ from the complete solution

Assume $m \geq n$

Recall $I^{(m)} \not\subseteq I^r \iff m \leq \frac{n^2r - n}{n^2 - n + 1}$.

Then $\frac{m}{r} > \frac{n^2}{n^2 - n + 1} > \frac{n^2 - n/r}{n^2 - n + 1} \Rightarrow m > \frac{n^2r - n}{n^2 - n + 1} \Rightarrow I^{(m)} \subseteq I^r$.

Thus, $\rho(I) \leq \frac{n^2}{n^2 - n + 1}$.

Conversely, take $m = tn^2 - 1$ and $r = t(n^2 - n + 1)$. Then

$m \leq \frac{n^2r - n}{n^2 - n + 1}$, but

$$\lim_{t \to \infty} \frac{m}{r} = \lim_{t \to \infty} \frac{tn^2 - 1}{t(n^2 - n + 1)} = \frac{n^2}{n^2 - n + 1},$$

so $\rho(I) \geq \frac{n^2}{n^2 - n + 1}$.

Computing $\rho(I)$ from the complete solution

Assume $m \geq n$

Recall $I^{(m)} \nsubseteq I^r \iff m \leq \frac{n^2 r - n}{n^2 - n + 1}$.

Then $\frac{m}{r} > \frac{n^2}{n^2 - n + 1} > \frac{n^2 - n/r}{n^2 - n + 1} \Rightarrow m > \frac{n^2 r - n}{n^2 - n + 1} \Rightarrow I^{(m)} \subseteq I^r$.

Thus, $\rho(I) \leq \frac{n^2}{n^2 - n + 1}$.

Conversely, take $m = tn^2 - 1$ and $r = t(n^2 - n + 1)$. Then

$m \leq \frac{n^2 r - n}{n^2 - n + 1}$, but

$$\lim_{t \to \infty} \frac{m}{r} = \lim_{t \to \infty} \frac{tn^2 - 1}{t(n^2 - n + 1)} = \frac{n^2}{n^2 - n + 1},$$

so $\rho(I) \geq \frac{n^2}{n^2 - n + 1}$.

Computing $\rho(I)$ from the complete solution

Assume $m \geq n$

Recall $I^{(m)} \not\subseteq I^r \iff m \leq \frac{n^2r - n}{n^2 - n + 1}$.

Then $\frac{m}{r} > \frac{n^2}{n^2 - n + 1} > \frac{n^2 - n/r}{n^2 - n + 1} \implies m > \frac{n^2r - n}{n^2 - n + 1} \implies I^{(m)} \subseteq I^r$.

Thus, $\rho(I) \leq \frac{n^2}{n^2 - n + 1}$.

Conversely, take $m = tn^2 - 1$ and $r = t(n^2 - n + 1)$. Then

$m \leq \frac{n^2r - n}{n^2 - n + 1}$, but

$$\lim_{t \to \infty} \frac{m}{r} = \lim_{t \to \infty} \frac{tn^2 - 1}{t(n^2 - n + 1)} = \frac{n^2}{n^2 - n + 1},$$

so $\rho(I) \geq \frac{n^2}{n^2 - n + 1}$.
Computing $\rho(I)$ from the complete solution

Assume $m \geq n$

Recall $I^{(m)} \not\subseteq I^r \iff m \leq \frac{n^2r - n}{n^2 - n + 1}$.

Then $\frac{m}{r} > \frac{n^2}{n^2 - n + 1} > \frac{n^2 - n/r}{n^2 - n + 1} \Rightarrow m > \frac{n^2r - n}{n^2 - n + 1} \Rightarrow I^{(m)} \subseteq I^r$.

Thus, $\rho(I) \leq \frac{n^2}{n^2 - n + 1}$.

Conversely, take $m = tn^2 - 1$ and $r = t(n^2 - n + 1)$. Then

$m \leq \frac{n^2r - n}{n^2 - n + 1}$, but

$$\lim_{t \to \infty} \frac{m}{r} = \lim_{t \to \infty} \frac{tn^2 - 1}{t(n^2 - n + 1)} = \frac{n^2}{n^2 - n + 1}, \text{ so } \rho(I) \geq \frac{n^2}{n^2 - n + 1}.$$
Computing $\rho(I)$ from the complete solution

Assume $m \geq n$

Recall $I^{(m)} \not\subseteq I^r \iff m \leq \frac{n^2 r - n}{n^2 - n + 1}$.

Then $\frac{m}{r} > \frac{n^2}{n^2 - n + 1} > \frac{n^2 - n/r}{n^2 - n + 1} \Rightarrow m > \frac{n^2 r - n}{n^2 - n + 1} \Rightarrow I^{(m)} \subseteq I^r$.

Thus, $\rho(I) \leq \frac{n^2}{n^2 - n + 1}$.

Conversely, take $m = tn^2 - 1$ and $r = t(n^2 - n + 1)$. Then

$m \leq \frac{n^2 r - n}{n^2 - n + 1}$, but

$$\lim_{t \to \infty} \frac{m}{r} = \lim_{t \to \infty} \frac{tn^2 - 1}{t(n^2 - n + 1)} = \frac{n^2}{n^2 - n + 1},$$

so $\rho(I) \geq \frac{n^2}{n^2 - n + 1}$.
Computing $\rho(I)$ from the complete solution

Assume $m \geq n$

Recall $I^{(m)} \not\subseteq I^r \iff m \leq \frac{n^2r - n}{n^2 - n + 1}$.

Then $\frac{m}{r} > \frac{n^2}{n^2 - n + 1} > \frac{n^2 - n/r}{n^2 - n + 1} \implies m > \frac{n^2r - n}{n^2 - n + 1} \implies I^{(m)} \subseteq I^r$.

Thus, $\rho(I) \leq \frac{n^2}{n^2 - n + 1}$.

Conversely, take $m = tn^2 - 1$ and $r = t(n^2 - n + 1)$. Then

$m \leq \frac{n^2r - n}{n^2 - n + 1}$, but

$$\lim_{t \to \infty} \frac{m}{r} = \lim_{t \to \infty} \frac{tn^2 - 1}{t(n^2 - n + 1)} = \frac{n^2}{n^2 - n + 1},$$

so $\rho(I) \geq \frac{n^2}{n^2 - n + 1}$.
Computing $\rho(I)$ from the complete solution

Assume $m \geq n$

Recall $I^{(m)} \not\subseteq I^r \iff m \leq \frac{n^2r - n}{n^2 - n + 1}$.

Then $\frac{m}{r} > \frac{n^2}{n^2 - n + 1} > \frac{n^2 - n/r}{n^2 - n + 1} \Rightarrow m > \frac{n^2r - n}{n^2 - n + 1} \Rightarrow I^{(m)} \subseteq I^r$.

Thus, $\rho(I) \leq \frac{n^2}{n^2 - n + 1}$.

Conversely, take $m = tn^2 - 1$ and $r = t(n^2 - n + 1)$. Then

$m \leq \frac{n^2r - n}{n^2 - n + 1}$, but

$$\lim_{t \to \infty} \frac{m}{r} = \lim_{t \to \infty} \frac{tn^2 - 1}{t(n^2 - n + 1)} = \frac{n^2}{n^2 - n + 1}, \text{ so } \rho(I) \geq \frac{n^2}{n^2 - n + 1}.$$

Computing $\rho(I)$ from the complete solution

Assume $m \geq n$

Recall $I^{(m)} \not\subseteq I^r \iff m \leq \frac{n^2r - n}{n^2 - n + 1}$.

Then $\frac{m}{r} > \frac{n^2}{n^2 - n + 1} > \frac{n^2 - n/r}{n^2 - n + 1} \Rightarrow m > \frac{n^2r - n}{n^2 - n + 1} \Rightarrow I^{(m)} \subseteq I^r$.

Thus, $\rho(I) \leq \frac{n^2}{n^2 - n + 1}$.

Conversely, take $m = tn^2 - 1$ and $r = t(n^2 - n + 1)$. Then

$m \leq \frac{n^2r - n}{n^2 - n + 1}$, but

$$\lim_{t \to \infty} \frac{m}{r} = \lim_{t \to \infty} \frac{tn^2 - 1}{t(n^2 - n + 1)} = \frac{n^2}{n^2 - n + 1},$$

so $\rho(I) \geq \frac{n^2}{n^2 - n + 1}$.
Computing $\rho(I)$ from the complete solution

Assume $m \geq n$

Recall $I^{(m)} \not\subseteq I^r \iff m \leq \frac{n^2r - n}{n^2 - n + 1}$.

Then $\frac{m}{r} > \frac{n^2}{n^2 - n + 1} > \frac{n^2 n/r}{n^2 - n + 1} \Rightarrow m > \frac{n^2r - n}{n^2 - n + 1} \Rightarrow I^{(m)} \subseteq I^r$.

Thus, $\rho(I) \leq \frac{n^2}{n^2 - n + 1}$.

Conversely, take $m = tn^2 - 1$ and $r = t(n^2 - n + 1)$. Then $m \leq \frac{n^2r - n}{n^2 - n + 1}$, but

$$\lim_{t \to \infty} \frac{m}{r} = \lim_{t \to \infty} \frac{tn^2 - 1}{t(n^2 - n + 1)} = \frac{n^2}{n^2 - n + 1},$$
so $\rho(I) \geq \frac{n^2}{n^2 - n + 1}$.
Computing $\rho(I)$ from the complete solution

Assume $m \geq n$

Recall $I^{(m)} \not\subseteq I^r \iff m \leq \frac{n^2r - n}{n^2 - n + 1}$.

Then $\frac{m}{r} > \frac{n^2}{n^2 - n + 1} > \frac{n^2 - n/r}{n^2 - n + 1} \Rightarrow m > \frac{n^2r - n}{n^2 - n + 1} \Rightarrow I^{(m)} \subseteq I^r$.

Thus, $\rho(I) \leq \frac{n^2}{n^2 - n + 1}$.

Conversely, take $m = tn^2 - 1$ and $r = t(n^2 - n + 1)$. Then

$m \leq \frac{n^2r - n}{n^2 - n + 1}$, but

$$\lim_{t \to \infty} \frac{m}{r} = \lim_{t \to \infty} \frac{tn^2 - 1}{t(n^2 - n + 1)} = \frac{n^2}{n^2 - n + 1},$$

so $\rho(I) \geq \frac{n^2}{n^2 - n + 1}$.
Symbolic powers are ordinary powers

Theorem

If I is the ideal of n collinear points and one point off the line, then $I^{(nt)} = (I^{(n)})^t$ for all $t \geq 1$. Moreover, n is the least positive integer for which this equality holds for all $t \geq 1$.

As a consequence, the symbolic power algebra $\oplus I^{(m)}$ is Noetherian.
Symbolic powers are ordinary powers

Theorem

If I is the ideal of n collinear points and one point off the line, then $I^{(nt)} = (I^{(n)})^t$ for all $t \geq 1$. Moreover, n is the least positive integer for which this equality holds for all $t \geq 1$.

As a consequence, the symbolic power algebra $\bigoplus I^{(m)}$ is Noetherian.
Two conjectures

Harbourne and Huneke conjectured:

Conjecture

\[I^{(2r)} \subseteq M^r I^r, \text{ where } M \text{ is the ideal generated by the variables.} \]

Conjecture

\[I^{(2r-1)} \subseteq M^{r-1} I^r, \text{ where } M \text{ is the ideal generated by the variables.} \]

Both are true for the ideal \(I \) of \(n \) collinear points and one point off the line.
Thank you!